Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 98: 106528, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37506508

RESUMO

Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe3. The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.

2.
RSC Adv ; 12(53): 34670-34684, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545608

RESUMO

Waste polyethylene terephthalate (PET) bottles have become a significant post-consumer plastic waste with attendant environmental problems. Hence, ionothermal synthesis has been used to prepare activated carbon (AC) anode materials from waste PET for both high performance and sustainable lithium-ion batteries (LIB). Particularly, using choline chloride deep eutectic salts (CU-DES) does not require post-synthesis washing and thereby reduces the complexity of the process and produces materials with unique low-surface area, higher levels of graphitization/ordering, and high nitrogen doping in the obtained ACs. The results show that the AC produced using CU-DES (PET-CU-A-ITP2) gave good electrochemical performance. Even though the material possesses a low surface area (∼23 m2 g-1), it displays a gravimetric capacity (GC) of ∼460 mA h g-1 and a coulombic efficiency (CE) of ∼53% in the 1st cycle and very good cycling performance with a capacity retention of 98% from the 2nd to the 100th cycle. The superior electrochemical performance of the PET-CU-A-ITP2 anode was found to be due to its better graphitization/ordering and dense structure which results in higher capacity, formation of less solid electrolyte interphase, and higher CE. These results show that dense carbons can be exploited as high-performance anodes in LIBs. Also, this research presents both a pathway for waste PET management and a waste-energy approach that could offer cheaper and greener LIBs to meet the sustainable development goals.

3.
Inorg Chem ; 60(24): 18975-18980, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851091

RESUMO

The lithium argyrodites Li6PS5X (X = Cl, Br, and I) have attracted interest as fast solid ionic conductors for solid-state batteries. Within this class of materials, it has been previously suggested that more polarizable anions and larger substituents should influence the ionic conductivity (e.g., substituting S by Se). Building upon this work, we explore the influence of Sn substitution in lithium argyrodites Li6+xSnxP1-xSe5I in direct comparison to the previously reported Li6+xSnxP1-xS5I series. The (P5+/Sn4+)Se43/4- polyhedral volume, unit cell volume, and lithium coordination tetrahedra Li(48h)-(S/Se)3-I increase with Sn substitution in this new selenide series. Impedance spectroscopy reveals that increasing Sn4+ substitution results in a fivefold improvement in the ionic conductivity when compared to Li6PSe5I. This work provides further understanding of compositional influences for optimizing the ionic conductivity of solid electrolytes.

4.
J Am Chem Soc ; 143(43): 18216-18232, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677973

RESUMO

Extended anionic frameworks based on condensation of polyhedral main group non-metal anions offer a wide range of structure types. Despite the widespread chemistry and earth abundance of phosphates and silicates, there are no reports of extended ultraphosphate anions with lithium. We describe the lithium ultraphosphates Li3P5O14 and Li4P6O17 based on extended layers and chains of phosphate, respectively. Li3P5O14 presents a complex structure containing infinite ultraphosphate layers with 12-membered rings that are stacked alternately with lithium polyhedral layers. Two distinct vacant tetrahedral sites were identified at the end of two distinct finite Li6O1626- chains. Li4P6O17 features a new type of loop-branched chain defined by six PO43- tetrahedra. The ionic conductivities and electrochemical properties of Li3P5O14 were examined by impedance spectroscopy combined with DC polarization, NMR spectroscopy, and galvanostatic plating/stripping measurements. The structure of Li3P5O14 enables three-dimensional lithium migration that affords the highest ionic conductivity (8.5(5) × 10-7 S cm-1 at room temperature for bulk), comparable to that of commercialized LiPON glass thin film electrolytes, and lowest activation energy (0.43(7) eV) among all reported ternary Li-P-O phases. Both new lithium ultraphosphates are predicted to have high thermodynamic stability against oxidation, especially Li3P5O14, which is predicted to be stable to 4.8 V, significantly higher than that of LiPON and other solid electrolytes. The condensed phosphate units defining these ultraphosphate structures offer a new route to optimize the interplay of conductivity and electrochemical stability required, for example, in cathode coatings for lithium ion batteries.

5.
ACS Omega ; 6(20): 13375-13383, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056484

RESUMO

Nanosized samples of the cubic thiospinel FeCr2S4 were synthesized by ball milling of FeS and Cr2S3 precursors followed by a distinct temperature treatment between 500 and 800 °C. Depending on the applied temperature, volume weighted mean (L vol) particle sizes of 56 nm (500 °C), 86 nm (600 °C), and 123 nm (800 °C) were obtained. All samples show a transition into the ferrimagnetic state at a Curie temperature T C of ∼ 167 K only slightly depending on the annealing temperature. Above T C, ferromagnetic spin clusters survive and Curie-Weiss behavior is observed only at T ≫ T C, with T depending on the heat treatments and the external magnetic field applied. Zero-field-cooled and field-cooled magnetic susceptibilities diverge significantly below T C in contrast to what is observed for conventionally solid-state-prepared polycrystalline samples. In the low-temperature region, all samples show a transition into the orbital ordered state at about 9 K, which is more pronounced for the samples heated to higher temperatures. This observation is a clear indication that the cation disorder is very low because a pronounced disorder would suppress this magnetic transition. The unusual magnetic properties of the samples at low temperatures and different external magnetic fields can be clearly related to different factors like structural microstrain and magnetocrystalline anisotropy.

6.
RSC Adv ; 11(48): 30283-30294, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480254

RESUMO

We investigated why commercial Li7La3Zr2O12 (LLZO) with Nb- and Ta substitution shows very low mobility on a local scale, as observed with temperature-dependent NMR techniques, compared to Al and W substituted samples, although impedance spectroscopy on sintered pellets suggests something else: conductivity values do not show a strong dependence on the type of substituting cation. We observed that mechanical treatment of these materials causes a symmetry reduction from garnet to hydrogarnet structure. To understand the impact of this lower symmetric structure in detail and its effect on the Li ion conductivity, neutron powder diffraction and 6Li NMR were utilized. Despite the finding that, in some materials, disorder can be beneficial with respect to ionic conductivity, pulsed-field gradient NMR measurements of the long-range transport indicate a higher Li+ diffusion barrier in the lower symmetric hydrogarnet structure. The symmetry reduction can be reversed back to the higher symmetric garnet structure by annealing at 1100 °C. This unintended phase transition and thus a reduction in conductivity is crucial for the processing of LLZO materials in the fabrication of all-solid state batteries.

7.
Sci Rep ; 10(1): 9080, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493958

RESUMO

Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4)2, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4)2 is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4)2 and ball milled, amorphous Mg(BH4)2 confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4)2 at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4] units, revealing a much larger fraction of activated [BH4] rotations in amorphous Mg(BH4)2. These findings suggest that the conduction process in amorphous Mg(BH4)2 is supported by stronger rotational mobility, which is proposed to be the so-called "paddle-wheel" mechanism.

8.
Dalton Trans ; 49(5): 1668-1673, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31950957

RESUMO

The development of all-solid-state sodium-ion batteries as an alternative energy storage system to lithium based techniques demands for sodium conducting solid electrolytes and an understanding of the sodium conduction mechanism governed by the local structure of these glass-ceramic materials. Na2P2S6 was synthesized in an amorphous state with subsequent crystallization. The change of the local structure before and after crystallization was analyzed in detail regarding the presence of structural building blocks such as [P2S6]2-, [P2S6]4-, [P2S7]4-, and [PS4]3-. The structure of the crystalline phase differs markedly compared to the corresponding amorphous phase.

9.
ACS Omega ; 4(1): 2398-2409, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459478

RESUMO

Here, we report that the trimetallic nanosized oxide NiFeMnO4 consists of a mixture of NiO and a strained cubic spinel phase, which is clearly demonstrated by analysis of the pair distribution function (PDF) and synchrotron X-ray data. Such a finding can easily be overlooked by using only inhouse X-ray powder diffraction, leading to inaccurate assumption of the stoichiometry and oxidation states. Such advanced characterization is essential because a homogeneous distribution of the elements is observed in energy-dispersive X-ray spectroscopy maps, giving no hints for a phase separation. Cycling of the sample against Li delivers a high reversible capacity of ≈840 mAh/g in the 50th cycle. Operando X-ray absorption spectroscopy (XAS) experiments indicate that ≈0.8 Li/fu is consumed without detectable changes of the electronic structure. Increasing amounts of Li, Mn3+, and Fe3+ are simultaneously reduced. The disappearance of the pre-edge features in X-ray absorption near-edge spectroscopy indicates movement of these cations from tetrahedral sites to octahedral sites. PDF analysis of the pattern after an uptake of 2 Li/fu evidences that the principal structure can be sufficiently well modeled assuming coexisting NiO, a mixed monoxide, and a small amount of residual spinel phase. Thus, the majority of cations is located on octahedral sites. Furthermore, an improvement of the PDF model is achieved taking into account small amounts of LiOH. The 7Li MAS NMR spectrum of this sample clearly shows the signal of Li in a diamagnetic environment, excluding Li-O-TM bonds. A further increase of the Li content leads to a successive conversion of the cations to nanosized metal particles embedded in a LiOH/Li2O matrix. Ex situ XAS results indicate that Fe can be reversibly reoxidized to Fe3+ during charge whereas Mn does not reach the oxidation state observed in the pristine material. After excessive cycling, reoxidation of metallic Ni is suppressed and contributes to a capacity loss compared with the early discharge/charge cycles.

10.
Chemistry ; 25(27): 6763-6772, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30829419

RESUMO

A new preparation route is developed for the synthesis of needle-like crystals of [Au(S2 CNH2 )2 ]SCN, which avoids disproportionation of the AuI salt used as a starting material. In the crystal structure, the two crystallographically independent AuIII centers are in a square-planar environment of two S2 CNH2 ligands. The Hirshfeld surface analysis reveals the presence of noncovalent intermolecular S⋅⋅⋅S interactions, which are essential for the spatial arrangement of the molecules. Density functional theory (DFT) calculations including dispersion and damping corrections result in a unit cell volume very close to the value determined experimentally. Thermal decomposition in an inert atmosphere generates black needles with lengths of up to 500 µm. X-ray powder diffraction and pair distribution function analyses demonstrate that the needles are composed of nanosized crystals with a volume-weighted average domain size of 20(1) nm. According to results of X-ray photoemission experiments, the black needles are covered by a nitrogen-rich carbon nitride with composition near (CN)2 N. 13 C solid-state NMR investigations indicate that two different carbon species are present, with signals corresponding well to heptazine units as in melon and triazine units as in poly(triazin imide) type compounds. Scanning transmission electron microscopy tomography evidences that the needles are composed of slightly elongated nanoparticles.

11.
Nanoscale ; 10(45): 21142-21150, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406795

RESUMO

As a case study for the evaluation of the nanostructure of layered materials, we report on results of the comprehensive characterization of high-energy ball-milled layered molybdenum disulfide (2H-MoS2) on different length scales. Analysis of X-ray powder diffraction patterns (XRPDs) including the Debye background at low scattering angles caused by uncorrelated single or few-layer MoS2 slabs (full scattering model), yield much more precise data about the average stacking degree than routine XRPD evaluation, and an estimation of the amount of single layer material is possible. Reflections with super Lorentzian line shape can be satisfactorily modeled assuming different stacking sequences induced by the mechanical forces exerted during the high-energy ball-mill process. An advanced analysis of UV-Vis spectra to determine layer number and lateral crystallite size, which was recently developed for liquid exfoliation materials, is used for the first time, and the results demonstrate the universal applicability of the approach. The data obtained with this analysis support the main findings of evaluation of the XRPD data. Both methods clearly evidence that increasing the duration of high-energy ball-mill treatment leads to an increase of material with decreasing average stacking and a reduction of the lateral size of the slabs. Finally, high-resolution transmission electron microscopy enabled identification of defects which can hardly be detected in XRPDs or in UV-Vis spectra.

12.
Phys Chem Chem Phys ; 20(28): 19129-19141, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29974092

RESUMO

We report on results of a comprehensive investigation on reaction mechanisms occurring during Li uptake and release of the composite NiFe2O4/CNT. Operando X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) data collected simultaneously using one in situ cell allowed thorough elucidation of structural and electronic alterations happening during Li uptake. From the beginning of Li uptake, the Bragg intensity of the spinel reflections decreases which can be explained by reduction of Fe3+ ions and simultaneous movement of the Fe2+ cations from tetrahedral 8a to empty octahedral 16c sites. The reduction of Fe3+ is clearly evidenced by XAS. The occupation of tetrahedral sites by Li+ can be excluded based on results of density functional theory calculations. Increasing the Li content leads to formation of a new crystalline phase resembling a monoxide with a NaCl-like structure. The appearance of the new phase is accompanied by a steady decrease of the sizes of coherently scattering domains of the spinel and a growth of the domains of the monoxide phase. After uptake of about 2.5 Li per NiFe2O4, all Fe3+ cations are reduced to Fe2+ and the tetrahedral 8a sites are empty (XAS spectra). Careful Rietveld refinements of X-ray powder patterns demonstrate that the tetrahedral 8a site is successively depleted with increasing Li content. Interestingly, the occupancy of the octahedral 16d site is also slightly reduced. Increasing the Li content beyond 2.5 Li/NiFe2O4 leads to successive reduction of the cations to very small metal particles embedded in a Li2O matrix (as evidenced by 7Li MAS NMR investigations). During Li release metallic Ni and Fe are reoxidized to Ni2+ resp. Fe3+. The cycling stability of NiFe2O4/CNT is significantly improved compared to pure NiFe2O4 or a mechanical mixture of NiFe2O4 and CNTs.

13.
ACS Appl Mater Interfaces ; 9(25): 21283-21291, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28594544

RESUMO

The ternary compound CuV2S4 exhibits an excellent performance as anode material for sodium ion batteries with a high reversible capacity of 580 mAh g-1 at 0.7 A g-1 after 300 cycles. A Coulombic efficiency of ≈99% is achieved after the third cycle. Increase of the C-rate leads to a drop of the capacity, but a full recovery is observed after switching back to the initial C-rate. In the early stages of Na uptake first Cu+ is reduced and expelled from the electrode as nanocrystalline metallic Cu. An increase of the Na content leads to a full conversion of the material with nanocrystalline Cu particles and elemental V embedded in a Na2S matrix. The formation of Na2S is evidenced by 23Na MAS NMR spectra and X-ray powder diffraction. During the charge process the nanocrystalline Cu particles are retained, but no crystalline materials are formed. At later stages of cycling the reaction mechanism changes which is accompanied by the formation of copper(I) sulfide. The presence of nanocrystalline metallic Cu and/or Cu2S improves the electrical conductivity, leading to superior cycling and rate capability.

14.
ACS Appl Mater Interfaces ; 8(24): 15320-32, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27219129

RESUMO

Conversion reactions deliver much higher capacities than intercalation/deintercalation reactions of commercial Li ion batteries. However, the complex reaction pathways of conversion reactions occurring during Li uptake and release are not entirely understood, especially the irreversible capacity loss of Mn(III)-containing oxidic spinels. Here, we report for the first time on the electrochemical Li uptake and release of Co(II)Mn(III)Fe(III)O4 spinel nanoparticles and the conversion reaction mechanisms elucidated by combined operando X-ray diffraction, operando and ex-situ X-ray absorption spectroscopy, transmission electron microscopy, (7)Li NMR, and molecular dynamics simulation. The combination of these techniques enabled uncovering the pronounced electronic changes and structural alterations on different length scales in a unique way. The spinel nanoparticles undergo a successive phase transition into a mixed monoxide caused by a movement of the reduced cations from tetrahedral to octahedral positions. While the redox reactions Fe(3+) ↔ Fe(0) and Co(2+) ↔ Co(0) occur for many charge/discharge cycles, metallic Mn nanoparticles formed during the first discharge can only be oxidized to Mn(2+) during charge. This finding explains the partial capacity loss reported for Mn(III)-based spinels. Furthermore, the results of the investigations evidence that the reaction mechanisms on the nanoscale are very different from pathways of microcrystalline materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...